West Bengal State University

B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2014 PART - I

MATHEMATICS - GENERAL

Paper - I

Duration : 3 Hours]
| Full Marks : 100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP - A
বিভাগ - ক
(Classical Algebra)
(ক্লাসিক্যাল বীজগণিত)
(Full Marks : 25)
(পূর্ণমান : ২৫)
Answer Question No. 1 and any two from the rest.
১ নং প্রশ্ন ও অন্য যে কোন দুটি প্রশ্নের উত্তর দিন।

1. a) Answer any one question:

য়ে কোন একটি প্রশ্নের উত্তর দিন :
i) On the complex plane, let $P(z)$ be a variable point such that $|z+3 i|=4$. Find the locus of P.

জটিল তলের উপর $P(z)$ এমন এক চলমান বিন্দু যাত $|z+3 i|=4$ হয় । P বিন্দুর সঞ্চারপথ নির্ণয় করুন।
ii) Show that $x^{4}+x^{3}-x^{2}-4$ is exactly divisible by $(x+2)$.

पেথান যে $x^{4}+x^{3}-x^{2}-4$ রाশिটि $(x+2)$ घ্बाরা বিভাজ্য ।
iii) Show that the matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is orthogonal. দেখान ভে $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ ম্যाप्रिभ्भটি একটি नম্ব ম্যাত্রিঙ্গ ।
b) Answer any one question :
$1 \times 3=3$
যে কোন এবঢি প্রশ্নের উত্তর দিন :
i) Solve the equation $4 x^{3}+16 x^{2}-9 x-36=0$, when the sum of two of its roots is zero.
$4 x^{3}+16 x^{2}-9 x-36=0$ সমীকরণটি সমাধান করুন, যেथানে সমীকরণটির দूটি বীब্ছর সমళ্টি শুন্য ।
ii). If $A+I_{3}=\left[\begin{array}{rrr}1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1\end{array}\right]$, evaluate $\left(A+I_{3}\right)\left(A-I_{3}\right)$, where
$I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
यиि $A+I_{3}=\left[\begin{array}{rrr}1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1\end{array}\right]$ इয়, তबে $\left(A+I_{3}\right)\left(A-I_{3}\right)$-এর মান निর্ণয় করুন,
बেथान $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
iii) Solve the equation : $\left|\begin{array}{ccc}x+a & b & c \\ c & x+b & a \\ a & b & x+c\end{array}\right|=0$

সমीকরণधी সমাधাन করুन : $\left|\begin{array}{ccc}x+a & b & c \\ c & x+b & a \\ a & b & x+c\end{array}\right|=0$
2. a) If $x+\frac{1}{x}=2 \cos \theta$; then prove that $x^{n}+\frac{1}{x^{n}}=2 \cos n \theta$.

यदि $x+\frac{1}{x}=2 \cos \theta$ इग, उब फেথাन बে $x^{n}+\frac{1}{x^{n}}=2 \cos n \theta$.
b) Prove that $\sin \left(i \log \frac{a-i b}{a+i b}\right)=\frac{2 a b}{a^{2}+b^{2}}(a, b$ are real $)$.

थ্रমাণ করুन यে, $\sin \left(i \log \frac{a-i b}{a+i b}\right)=\frac{2 a b}{a^{2}+b^{2}}(a, b$ बात्ठব সशथाा)।
3. a) If α, β, γ be the roots of the equation $x^{3}+2 x^{2}-5 x-6=0$, find the equation whose roots are $\alpha(\beta+\gamma), \beta(\gamma+\alpha)$ and $\gamma(\alpha+\beta)$.
 $\alpha(\beta+\gamma), \beta(\gamma+\alpha)$ এবश $\gamma(\alpha+\beta)$ जा निर्णয় बহর্ন।
b) Solve the cubic equation $x^{3}-15 x-126=0$ by Cardan's method.
4. a) Prove that $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c, & a & b\end{array}\right|=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$.

ब्रमाण बरून बে, $\left|\begin{array}{lll}a & b & c \\ b & c & d \\ c & d & b\end{array}\right|=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$

$$
\begin{aligned}
& \text { B) Solve by Cramer's Rule : } \\
& 3 x+2 y+4 z=19,2 x-y+z=3,6 x+7 y-z=17 .
\end{aligned}
$$

Cramet-@र निसबस अमाथान क्रान :

$$
3 \ddot{x}+2 y+4 z=19,2 x-y+z=3,6 x+7 y-z=17
$$

5. a) If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, show that $A^{2}-4 A-5 I_{3}=0$, then obtain A^{-1}.
[0 null matrix].
5

बर्रन 1 [0 Шन्य बापिच]
b) Find the inverse of the matrix $\left[\begin{array}{rrr}1 & 1 & 2 \\ 2 & -1 & 3 \\ 3 & -1 & -1\end{array}\right]$ and using it solve the following system of equations :

$$
\begin{equation*}
x+y+2 z=4,2 x-y+3 z=9,3 x-y-z=2 . \tag{5}
\end{equation*}
$$

সমীকরণฑলির সমাখান করুন :

$$
\begin{gathered}
x+y+2 z=4,2 x-y+3 z=9,3 x-y-z=2 . \\
\text { GROUP - B } \\
\text { बिढाण - }
\end{gathered}
$$

(Full Marks: 15)
(भूर्थवान : $>\in$)
Answer Question No. 6 and any one from the rest.
৬ নং প্রশ্ন ও অन্য যে কোন একটt প্রশ্নের উত্তর দিন।
6. Answer any one question : $1 \times 3=3$

ভে কোন একঢি প্রশ্নের উত্তর দিন :
a) Find the new origin on the x-axis so that the equation $y=m x+c$ reduces to the form $l \boldsymbol{x}+\boldsymbol{m y}=\mathbf{0}$.
x-অक्ञর উপর নৃতন মৃনবিন্দू নির্ণয় করুন যাত $y=m x+c$ সমীকরণটি $l x+m y=0$ সমীকরণের আকার নেয় ।
b) Find the angle between the pair of straight lines $x^{2}+5 x y+6 y^{2}=0$.
$x^{2}+5 x y+6 y^{2}=0$ সরলরেথাঘয়ের অন্তর্গত কোণটি নির্ণয় করুন।
c) Find the rectangular Cartesian co-ordinates of the point whose polar co-ordinates are $\left(2, \frac{7}{6} \pi\right)$.

7. a) Reduce the equation $x^{2}-6 x y+y^{2}-4 x-4 y+12=0$ into its canonical form and identify the conic.
$x^{2}-6 x y+y^{2}-4 x-4 y+12=0$ সমीকরণढिबে आमশ आকারে পরিণত করুन এবर সেটি बि প্রকৃতির কণिক जा সৃচ্চিত করুन।
b) If $\frac{l}{r}=A \cos \theta+B \sin \theta$ touches the conic $\frac{l}{r}=1+e \cos \theta$, then show that

$$
\begin{equation*}
(A-e)^{2}+B^{2}=1 \tag{6}
\end{equation*}
$$

यमि $\frac{l}{r}=A \cos \theta+B \sin \theta$ সরুলরেथा $\frac{l}{r}=1+e \cos \theta$ কविকটিকে স্পশ করে, তরে দেथান
(x., $(A-e)^{2}+B^{2}=1$.
8. a) For what values of λ, the equation $x^{2}+\lambda x y-2 y^{2}+3 y-1=0$ represents a pair of straight lines ? 2
$x^{2}+\lambda x y-2 y^{2}+3 y-1=0$ সমীকরণটিতে λ-এর মান কত:হলে, এটি একটি সরনলরেথাब্যেের সমীকরণকে সৃচিত করবে তা নির্ণয় করুন।
b) If the pair of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angles between the other pair, prove that $p q+1=0$.

यमि $x^{2}-2 p x y-y^{2}=0$ এবः $x^{2}-2 q x y-y^{2}=0$ সরনরেথা জোড়াஸ⿵ি এমন इয় বে প্রতিটি জোড়া অপরাটির অন্তর্গত बোণঘ্যের সমঘ্বিথণ্ডক, তबে দেथান यে $p q+1=0$.
c) Show that the locus of the poles of the tangents to the parabola $y^{2}=4 b x$ with respect to the parabola $y^{2}=4 a x$ is the parabola $y^{2}=\frac{4 a^{2}}{b} x$.

मেथान बে $y^{2}=4 a x$ अथिবृत्बের সাপেক্ন, $y^{2}=4 b x$. अধिবৃत्बের স্পশ্শকঞলির পোলের সঞ্ঞারপথটিও একটট অধিবৃত্, यার সমীকরণ $y^{2}=\frac{4 a^{2}}{b} x$.

GROUP - C

বिडाগ - গ

(Full Marks : 15)
(পুর্শমান : ১\&)
9. Answer any one question :
$1 \times 3=3$
যে কোন একটি প্রশ্নের উত্তর দিন :
a) Show that the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \quad \vec{b}=\hat{i}-3 \hat{j}-5 \hat{k} \quad$ and $\vec{c}=3 \hat{i}-4 \hat{j}-4 \hat{k}$ where $\hat{i}, \hat{j}, \hat{k}$ are unit vectors parallel to co-ordinate axes, form the sides of a right angled triangle.
पেখান यে $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}$ এবং $\vec{c}=3 \hat{i}-4 \hat{j}-4 \hat{k}$ डেষ্ঠর তিনটি
 সমান্তরাল একক ভেট্টর ।
b) Find the angle between the two vectors $2 \hat{i}+2 \hat{j}-\hat{k}$ and $6 \hat{i}-3 \hat{j}+2 \hat{k}$. $2 \hat{i}+2 \hat{j}-\hat{k}$ এবং $6 \hat{i}-3 \hat{j}+2 \hat{k}$ ভেళ্ঠর দूটির অন্তড্ভুক্ত কোণের মান নির্ণয় করুন।
c) Find the work done by the force $\vec{F}=-2 \hat{i}+3 \hat{j}+5 \hat{k}$ whose point of application is given a displacement from the point $A(2,-1,-2)$ to the point $B(-1,-2,3)$.
$A(2,-1,-2)$ বিन्দूढिকে $B(-1,-2,3)$ বिन्मू পर্যন্ত निয়ে 凶েতে. $\vec{F}=-2 \hat{i}+3 \hat{j}+5 \hat{k}$ বলটिর घ্बाরা कৃতকার্य निर्ণয় করুন।
10. Answer any three questions :
$3 \times 4=12$
যে কোন তিনটি প্রশ্নের উত্তর দিন :
a) Prove that the points $-2 \hat{i}+3 \hat{j}+5 \hat{k}, \quad \hat{i}+2 \hat{j}+3 \hat{k}$ and $7 \hat{i}-\hat{k}$ are collinear.
দেথা यে $-2 \hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ এবং $7 \hat{i}-\hat{k}$ বिन्मूधुनि সমরেথ।
b) If D, E, F be the mid-points of the sides $B C, C A$ and $A B$ respectively of the ${ }^{-}$ triangle $A B C$, then show that $\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}=\overrightarrow{0}$.
D, E, F यमि यथाख्रমে $A B C$ ब্রিडूজ্জের তিনটি বाइ $B C, C A$ এবং $A B$-এর ম্যাবিन्দू इয়, তরে मেथान यে $\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}=\overrightarrow{0}$.
c) If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

यमि $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ इड़, उबে पেখान बে $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.
d) Prove that $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\gamma} \times \vec{\delta})=(\vec{\alpha} \cdot \vec{\gamma})(\vec{\beta} \cdot \vec{\delta})-(\vec{\alpha} \cdot \vec{\delta})(\vec{\beta} \cdot \vec{\gamma})$. প্रমাণ করুন थে $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\gamma} \times \vec{\delta})=(\vec{\alpha} \cdot \vec{\gamma})(\vec{\beta} \cdot \vec{\delta})-(\vec{\alpha} \cdot \vec{\delta})(\vec{\beta} \cdot \vec{\gamma})$
e) A force $\vec{F}=(2,2,9)$ is applied at the point $P(4,2,-3)$. Find the value and the direction cosines of the moment of this force about the point $Q(2,4,9)$.
$\vec{F}=(2,2,9)$ বলটি $P(4,2,-3)$ বিन्দूতে প্রয়োগ করা হল । $Q(2,4,9)$ বিन्দूর সাপেক্巾 বলটির ভ্রামকের মান এবং direction cosine গুি নির্ণয় করুন।

GROUP - D

বিভাং-ঘ

(Full Marks : 25)
 (পृर्बमान : २e)

Answer Question No. 11 and any two from the rest.
১১ নश थশ্ম B অन্য যে কোন দুঢি প্রক্গের উত্তর দিন।
11. a) Answer any one question :

ভ্যে কোন এনীt প্রশ্লের উত্তর দিন :
-i). Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous on $[0,1]$ and let f assumes only rational values. If $f\left(\frac{1}{2}\right)=\frac{1}{2}$, prove that $f(x)=\frac{1}{2} \forall x \in[0,1]$.

$$
f(x)=\frac{1}{2} \forall x \in[0,1] .
$$

ii) Find the radius of curvature of the curve $x y=12$ at $(3,4)$.

iii) Find $\lim _{x \rightarrow 1}-(1-x)^{\cos \left(\frac{\pi x}{2}\right)}$.

$$
\lim _{x \rightarrow 1-}(1-x)^{\cos \left(\frac{\pi x}{2}\right)}-\text { এর মান निর্ণহ করুন। }
$$

b). Answer any one question :

i) If $H=f(y-z, z-x, x-y)$, prove that $\frac{\partial H}{\partial x}+\frac{\partial H}{\partial y}+\frac{\partial H}{\partial z}=0$.

यमि $H=f(y-z, z-x \cdot x-y)$ इয়, প্रघाণ कরুन यে $\frac{\partial H}{\partial x}+\frac{\partial H}{\partial y}+\frac{\partial H}{\partial z}=0$.
ii) Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, where $f(x, y)=x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ for

$$
\begin{aligned}
& (x, y) \neq(0,0) \\
& f(x, y)=x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}[(x, y) \neq(0,0) \text { बর জन्य }] \text { रलে }
\end{aligned}
$$

$\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ निर्णয় কহুन ।
iii) Find the maximum \& minimum values of the function

$$
f(x)=1+2 \sin x+3 \cos ^{2} x\left(0 \leq x \leq \frac{\pi}{2}\right) .
$$

$f(x)=1+2 \sin x+3 \cos ^{2} x\left(0 \leq x \leq \frac{\pi}{2}\right)$ अপেক্巾াটির চরম B जबম মান निर्णয়
बत्रन।
12. a) State and prove Cauchy's mean value theorem.

Caụchy-এর ম্যযম মান উপপাদ্যtঢ बিবৃত করুন ৪ প্রমাণ করুন।
b) Find pedal equation of the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
$x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ आাল্টের্যেডির পাमসমীকরণ निर्ণয় করুन।
13. a) If $u=\log r$ and $r^{2}=x^{2}+y^{2}+z^{2}$, prove that

$$
\begin{equation*}
r^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)=1 \tag{5}
\end{equation*}
$$

यमि $u=\log r$ এবং $r^{2}=x^{2}+y^{2}+z^{2}$ इয়, उबে ศেথাन যে
$r^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)=1$
b) Find the domain of the function $f(x)=\log _{2 x-5}\left(x^{2}-3 x-10\right)$.

$$
f(x)=\log _{2 x-5}\left(x^{2}-3 x-10\right) \text { अপেক্কেটির প্রসার নির্ণয় করুন। }
$$

c) Find $\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1+\sin x}\right)^{\frac{1}{\sin x}}$.
$\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1+\sin x}\right)^{\frac{1}{\sin x}}$-बर मान निर्णয় करুन।
14. a) If $H(x, y)$ be homogeneous function of x and y, of degree n having continuous first order partial derivatives and $u(x, y)=\left(x^{2}+y^{2}\right)^{-n / 2}$, show that .

$$
\frac{\partial}{\partial x}\left(H \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(H \frac{\partial u}{\partial y}\right)=0
$$

यमि $H(x, y), x$ ও y-এর একটি n মাত্রার সমঘাতী অপেক্কक হয় এবং প্রথম आৎশিক অז্তরক্লজब্টয় সং凹ার অঞ্চলে সন্তত হয় এবং $u(x, y)=\left(x^{2}+y^{2}\right)^{-n / 2}$ इয়, তাহলে फেथान बে $\frac{\partial}{\partial x}\left(H \frac{\partial u}{\partial \tilde{x}}\right)+\frac{\partial}{\partial y}\left(H \frac{\partial u}{\partial y}\right)=0$.
b) If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}},|x|<1$ show that
i) $\left(1-x^{2}\right) y_{2}-3 x y_{1}-y=0$
ii). $\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2}=0$.

यमि $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}},|x|<1$ इয়, उबে দেथान यে
i) $\left(1-x^{2}\right) y_{2}-3 x y_{1}-y=0$
ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2}=0$.
15. a) Show that at any point of curve $b y^{2}=(x+a)^{3}$, the subnormal varies as the square of the subtangent.

লেখান যে $b y^{2}=(x+a)^{3}$ বক্ররেখাটির যে কোন বিন্দুরে উপঅভিলম্ব উপস্পর্শকের বর্গের সাঞ্ে সরন ভেলে थाखে ।
b) If $f(x, y)=x y$, when $|x| \geq|y|$

$$
=-x y \text {, when }|x|<|y|
$$

show that $f_{x y}(0,0) \neq f_{y x}(0,0)$. Which conditions of Schwarz's theorem are not satisfied by f ?

$$
\begin{array}{rlrl}
f(x, y) & =x y, & & \text { यथन }|x| \geq|y| \tag{5}\\
& =-x y, & \text { यथन }|x|<|y|
\end{array}
$$

रलে লেখান बে, $f_{x y}(0 ; 0) \neq f_{y x}(0,0) 1$ Schwarz উপপাল্যের बোন্ बোন শর্ঠ f সিদ্ধ बরে নा ?

GROUP - E
विछाण -

(Full Marks: 10)

(পृर्भमान : >०)
16. Answer any one question :

$$
1 \times 2=2
$$

যে কোন একি প্রশ্సের উত্তর দিন :
a) Evaluate : $\int_{0}^{2 \pi}|\sin x| \mathrm{d} x$.

মान निर्ণয় करুन : $\int_{0}^{2 \pi}|\sin x| \mathrm{d} x$
b) If a function $f(x)$ is periodic with period T, then prove that

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a+n T}^{b+n T} f(x) \mathrm{d} x ; n \text { is an integer. }
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a+n T}^{b+n T} f(x) \mathrm{d} x, n \text { এबた थृर्वभश्या । }
$$

c) Evaluate : $\int \frac{e^{x} \mathrm{dx}}{5-4 e^{x}-e^{2 x}}$.

घान निर्णय कर्रा : $\int \frac{e^{x} \mathrm{dx}}{5-4 e^{x}-e^{2 x}}$
17. Answer any two questions :

a) If $I_{n}=\int_{0}^{\pi / 2} x^{n} \sin x \mathrm{~d} x(n \geq 1)$, then show that

$$
\begin{aligned}
& I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1} . \text { Hence show that } \\
& \int_{0}^{\pi / 2} x^{4} \sin x \mathrm{~d} x=\frac{\pi^{3}}{2}-12 \pi+24 .
\end{aligned}
$$

यमि $I_{n}=\int_{0}^{\pi / 2} x^{n} \sin x \mathrm{~d} x(n \geq 1)$ इड़, उबে निथान यে
$I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1}$ अउःপर व्लिन वय
$\int_{0}^{\pi / 2} x^{4} \sin x d x=\frac{\pi^{3}}{2}-12 \pi+24$.
b) Find the value of $\lim _{n \rightarrow \infty}\left\{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \ldots\left(1+\frac{n}{n}\right)\right\}^{1 / n}$

मान निर्णय्ग कर्श्न : $\lim _{n \rightarrow \infty}\left\{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \ldots\left(1+\frac{n}{n}\right)\right\}^{1 / n}$
c) Evaluate : $\int \frac{\sin x \mathrm{~d} x}{\sqrt{1+\sin x}}$.

घान निर्षड़ बक्रन : $\int \frac{\sin x \mathrm{~d} x}{\sqrt{1+\sin x}}$
d) Evaluate :

घान निर्णय्य কर্গু :

$$
\int \frac{d x}{\sqrt{\left(2 x^{2}-5 x+6\right)^{3}}}
$$

GROUP - F

বিछাฑ -

(Full Marks : 10)

(भूर्भमान : >०)
18. Answer any one question :

बে बোন बবणt প্রc্ञের উত্তর मिन :
a) Find the differential equation of the curve $e^{y-x}=\lambda(y+x), \lambda$ being a parameter.

b) Show that the curve for which the normal at every point passes through the origin is circle.
 - \quad -
c) Solve : $\{x y \cos (x y)+\sin (x y)\} \mathrm{d} x+x^{2} \cos (x y) \mathrm{d} y=0$.

সমाथान बर्ञन : $\{x y \cos (x y)+\sin (x y)\} \mathrm{d} x+x^{2} \cos (x y) \mathrm{d} y=0$
19. Answer any two questions :

a) Solve : $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$.

भমाधान কरून : $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$
b．Find the general and the singular solution of 8＂，

$$
y=p x+\sqrt{a^{2} p^{2}+b^{2}} ; p \equiv \frac{d y}{d x}
$$

$\therefore \quad r \quad y=p x+\sqrt{a^{2} p^{2}+b^{2}} ; p=\frac{d y}{d x}$
c）Solve ：$x \cos \left(\frac{y}{x}\right)(y \mathrm{~d} x+x \mathrm{~d} y)=y \sin \left(\frac{y}{x}\right)(x \mathrm{~d} y-y \mathrm{~d} x)$ ．
a

d）＂Solve ；cos $y \mathrm{~d} x+\left(1+e^{-x}\right) \sin y \mathrm{~d} y$ ，when $x=0, y \frac{\pi}{4}, \cdots$
भN⿱亠凶禸

