

### WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 2nd Semester Examination, 2020

# MTMHGEC02T/MTMGCOR02T-MATHEMATICS (GE2/DSC2)

## **DIFFERENTIAL EQUATIONS**

Time Allotted: 2 Hours

Full Marks: 50

 $2 \times 5 = 10$ 

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

### Answer Question No. 1 and any *five* from the rest

- 1. Answer any *five* questions from the following:
  - (a) Examine whether  $\{\cos x \tan y + \cos(x+y)\}dx + \{\sin x \sec^2 y + \cos(x+y)\}dy$  is an exact differential equation.
  - (b) Show that the functions 1, x and  $x^2$  are linearly independent. Hence find the differential equation whose solutions are 1, x and  $x^2$ .
  - (c) Prove that if f and g are two different solutions of y' + P(x)y = Q(x), then f g is a solution of the equation y' + P(x)y = 0.
  - (d) Show that  $\{x(x^2 y^2)\}^{-1}$  is an integrating factor of the differential equation  $(x^2 + y^2)dx 2xydy = 0$ .
  - (e) Find a particular integral of the differential equation

$$(D^2 - 4D)y = x^2$$
 where  $D \equiv \frac{d}{dx}$ .

(f) Eliminating the arbitrary constants from the following equation form the partial differential equation:

$$z = (a+x)(b+y)$$

- (g) Eliminate the arbitrary function f and g from z = f(x+iy) + g(x-iy) where  $i^2 + 1 = 0$ .
- (h) Find the order and degree of the following differential equation

$$\left(\frac{d^2 y}{dx^2}\right)^3 + x^2 \left(\frac{dy}{dx}\right)^4 = 4$$

2. (a) Obtain the general solution of the differential equation

$$xdy - ydx + a(x^2 + y^2)dx = 0$$

4

#### CBCS/B.Sc./Hons./Programme/2nd Sem./MTMHGEC02T/MTMGCOR02T/2020

(b) Determine the constant *A* so that the following differential equation is exact and hence solve the resulting equation:

$$\left(\frac{Ay}{x^3} + \frac{y}{x^2}\right)dx + \left(\frac{1}{x^2} - \frac{1}{x}\right)dy = 0$$

- 3. (a) Given that y = x+1 is a solution of  $[(x+1)^2 D 3(x+1)D + 3]y = 0$ , find a linearly independent solution by reducing the order. Hence determine the general solution.  $\left(D = \frac{d}{dx}\right)$ 
  - (b) Find an integrating factor of the following differential equation

$$x\frac{dy}{dx} + \sin 2y = x^4 \cos^2 y$$

4. (a) Obtain complete primitive and singular solution of

$$y = px + (1 + p^2)^{1/2}$$

- (b) Solve:  $p^2 + px = xy + y^2$
- 5. (a) Show that  $e^x$  and  $xe^x$  are linearly independent solutions of the differential 1+1+1+1+1equation  $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$ . Write the general solution of this differential equation. Find the solution that satisfies the condition y(0) = 1, y'(0) = 4. Is it unique solution? Over which interval is it defined?
  - (b) The complementary function of  $\frac{d^2y}{dx^2} + y = \cos x$  is  $A\sin x + B\cos x$ , where A and 3 B are constants. Find a particular integral.
- 6. (a) Apply the method of variation of parameters to solve the following equation:

$$x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2 \log x$$

(b) Fill in the blank:

In the 'method of variation of parameter' if  $y = A f_1(x) + B f_2(x)$  be the complementary function then the complete primitive is  $y = \phi(x) f_1(x) + \psi(x) f_2(x)$  provided .....

7. (a) Solve:  $\frac{dx}{dt} = -2x + 7y$ ,  $\frac{dy}{dt} = 3x + 2y$  subject to the conditions x(0) = 9 and 4y(0) = -1.

(b) Solve: 
$$\frac{d^2y}{dx^2} + y = \sin 2x$$
 given that  $y = 0$  and  $\frac{dy}{dx} = 0$  when  $x = 0$ .

2

6

3

3

4

5

#### CBCS/B.Sc./Hons./Programme/2nd Sem./MTMHGEC02T/MTMGCOR02T/2020

8. (a) Verify that the following equation is integrable and find its primitive:

$$xydx + (x^2y - zx)dy + (x^2z - xy)dz = 0.$$

(b) Find a complete integral of the following partial differential equation by Charpit's 3 method: z = p + q where  $p = \frac{\partial z}{\partial x}$  and  $q = \frac{\partial z}{\partial y}$ .

5

5

3

9. (a) Find the particular solution of the differential equation

$$(y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial z}{\partial y} = x - y$$
 which passes through the curve  $xy = 4$ ,  $z = 0$ .

(b) Classify the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} + (1 - x)\frac{\partial^2 z}{\partial y^2} = 0$$

into elliptic, parabolic and hyperbolic for different values of x.

**N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

-x-